
27

Chapter 2

Partial derivatives
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2.1 Introduction

Before we actually start taking derivatives of functions of

more than one variable let’s recall an important interpretation

of derivatives of functions of one variable. Recall that given a

function of one variable, f(x) , the derivative, f (x) represents

the rate of change of the function as x changes.  This is an

important interpretation of derivatives and we are not going

to want to lose it with functions of more than one variable.

The problem with functions of more than one variable is that

there is more than one variable.  In other words, what do we

do if we only want one of the variables to change, or if we

want more than one of them to change?  In fact, if we’re

going to allow more than one of the variables to change there

are then going to be an infinite amount of ways for them to

change.  For instance, one variable could be changing faster

than the other variables in the function.  Notice as well that it

will be completely possible for the function to be changing

differently depending on how we allow one or more of the

variables to change. We will need to develop ways, and

notations, for dealing with all of these cases.  In this section
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we are going to concentrate exclusively on only changing one

of the variables at a time, while the remaining variables are

held fixed.  We will deal with allowing multiple variables to

change in a later section. Because we are going to only allow

one of the variables to change taking the derivative will now

become a fairly simple process.  Let’s start off this discussion

with a fairly simple function. Let’s start with the function

f(x,y) = 2x2y3 and let’s determine the rate at which the

function is changing at a point(a,b), if we hold y fixed and

allow x to vary and if we hold x fixed and allow y to vary.

We’ll start by looking at the case of holding y fixed and

allowing x to vary.  Since we are interested in the rate of

change of the function at (a,b) and are holding y fixed this

means that we are going to always have y = b (if we didn’t

have this then eventually y would have to change in order to

get to the point…).  Doing this will give us a function

involving only x’s and we can define a new function as

follows, g(x) = f(x,b) = 2x2b3.

http://tutorial.math.lamar.edu/Classes/CalcIII/DirectionalDeriv.aspx
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Now, this is a function of a single variable and at this point

all that we are asking is to determine the rate of change of

g(x) at x = a.  In other words, we want to compute g (a) and

since this is a function of a single variable we already know

how to do that.  Here is the rate of change of the function at

(a,b) if we hold y fixed and allow x to vary such that

g (a) = 4ab3.  We will call g (a) the partial derivative of f(x,y)

with respect to x at (a,b) and we will denote it in the

following way, fx (a,b)= 4ab3. Now, let’s do it the other way.

We will now hold x fixed and allow y to vary.  We can do

this in a similar way.  Since we are holding x fixed it must be

fixed at x = a and so we can define a new function of y and

then differentiate this as we’ve always done with functions of

one variable. Here is the work for this, h(y) = f(a,y) = 2a2 y3

,h (b) =6a2 b2 . In this case we call h (b) the partial derivative

of f(x,y) with respect to y at (a,b) and we denote it as

follows, fy (a,b)= 6a2 b2 .

Note that these two partial derivatives are sometimes called

the first order partial derivatives.  Just as with functions of
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one variable we can have derivatives of all orders.  We will

be looking at higher order derivatives in a later section. Note

that the notation for partial derivatives is different than that

for derivatives of functions of a single variable.  With

functions of a single variable we could denote the derivative

with a single prime.  However, with partial derivatives we

will always need to remember the variable that we are

differentiating with respect to and so we will subscript the

variable that we differentiated with respect to.  We will

shortly be seeing some alternate notation for partial

derivatives as well. Note as well that we usually don’t use the

(a,b) notation for partial derivatives.  The more standard

notation is to just continue to use (x,y).  So, the partial

derivatives from above will more commonly be written as,

fx (x,y) = 4xy3  and fy (x,y) = 6x2y2. Now, as this quick

example has shown taking derivatives of functions of more

than one variable is done in pretty much the same manner as

taking derivatives of a single variable.  To compute fx (x,y)

all we need to do is treat all the y’s as constants (or numbers)

and then differentiate the x’s as we’ve always done.

http://tutorial.math.lamar.edu/Classes/CalcIII/HighOrderPartialDerivs.aspx
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Likewise, to compute fy(x,y) , we will treat all the x’s as

constants and then differentiate the y’s as we are used to

doing. Before we work any examples let’s get the formal

definition of the partial derivative out of the way as well as

some alternate notation. Since we can think of the two partial

derivatives above as derivatives of single variable functions it

shouldn’t be too surprising that the definition of each is very

similar to the definition of the derivative for single variable

functions.  Here are the formal definitions of the two

definitions partial derivatives we looked at above.

k 0

f(x,y+k)-f(x,y)f lim
y k
  (1)

Now let’s take a quick look at some of the possible alternate

notations for partial derivative.  Given the function z = f(x,y)

the following are all equivalent notations, fx (x,y)  = fx =

f
x

 = f(x,y)

x

 = zx=

z
x

 & fy(x,y)=fy=

f
y

 = f(x,y)

y

 = zy = z

y

 .

For the fractional notation for the partial derivative notice the

difference between the partial derivative and the ordinary

derivative from single variable calculus.

h 0

f(x +h,y)-f(x,y)f lim
x h
  ,
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x y
df f ff (x) f (x) , f (x,y) f (x,y) = and f (x,y) =

x ydx
      

Now let’s work some examples.  When working these

examples always keep in mind that we need to pay very close

attention to which variable we are differentiating with respect

to.  This is important because we are going to treat all other

variables as constants and then proceed with the derivative as

if it was a function of a single variable.  If you can remember

this you’ll find that doing partial derivatives are not much

more difficult that doing derivatives in of functions of a

single variable as we did in Calculus I.

Let f(x,y) be a function with two variables. If we keep y

constant and differentiate f (assuming f is differentiable) with

respect to the variable x, we obtain what is called the partial

derivative of f with respect to x which is denoted by f
x

 or fx .

Similarly If we keep x constant and differentiate f (assuming

f is differentiable) with respect to the variable y, we obtain

what is called the partial derivative of f with respect to y

which is denoted by f
y

 or fy. We now present several
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examples with detailed solution on how to calculate partial

derivatives.

Example 1

Find the partial derivatives fx and fy if f(x , y) is given by

a)      f(x,y) = x2y + 2x + y

b)    f(x,y) = y7lnx + 3
9
y

+ 7 4x

Solution:

Assume y is constant and differentiate with respect to x to

obtain

a) fx=
f
x

 = 2(x y + 2x + y)

x

 = 2xy+2x,

b) fx = f
x

 =

7

7 3

y 4
x 7 x


Then assume x is constant and differentiate with respect to y

to obtain
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a) fy =
f
y

  = 2 2(x y + 2x + y) = x +1,

y



b) fy =
f
y

  = 7y6 lnx - 4

27
y

Example 2

Find all of the first order partial derivatives for the following

functions.

a)  w(x,y,z) = x2y -10 y2z2+43x-7tan(4y),

b)  f(x,y) = cos( 4
x

)
2 3x y-5ye ,

Solution:

a) wx = 2xy+43,  wy = x2 -20 yz2-28sec2(4y),  wz = -20 y2z

b) fx = 2
4
x

 sin( 4
x

)
2 3x y-5ye -2xycos( 4

x
)

2 3x y-5ye ,

    fy = (x2y-15y2)cos( 4
x

)
2 3x y-5ye ,
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2.2 Total derivative

If the function is implicit such that f(x,y) = 0, then the first

derivative y   can be calculated as fx(x,y) + fy(x,y)  y = 0,

hence

y = x

y

f
f

 (2)

From second derivative, we will get:

fxx + fxy y   + fyy (y  )
2 + fyx y + fy y  = 0,

 therefore

fxx + 2fxy ( x

y

f
f

 )+ fyy ( x

y

f
f

 )2+ fy y    = 0,

Thus

y  =
2 2

xx y xy x y yy x
3
y

f f  - 2f f f +f f
f

 (3)
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Example 3

Find the first and second derivatives for the function

xcos(xy) + exy = 0

Solution:

Let f(x,y) = xcos(xy) + exy , fx= cos(xy) - xysin(xy) + yexy ,

and fy = -x2 sin(xy) + xexy, thus fxx= -2ysin(xy) - xy2cos(xy)

+ y2exy, and fyy = -x3 cos(xy) + x2exy,  fxy = -2x sin(xy) - x2y

cos(xy) + exy +xyexy.

Therefore

y =
xy

x
xy2

y

cos(xy)-xysin(xy) + yef
f -x  sin(xy) + xe

 

Hence

y  =
2 2

xx y xy x y yy x
3
y

f f  - 2f f f +f f
f


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2.3 Applications on partial derivatives

Taylor expansion

To expand the function in two variables f(x,y) about the

point (a,b) using Taylor expansion, we have to get fx, fy , fxx

, fxy , fyy , then substitute in the following expansion at (a,b)

such that: f(x,y) = f(a,b) + 1
1!

[fx(a,b) (x-a) + fy(a,b)(y-b)]

+ 1
2!

[fxx(a,b)(x-a)2 + 2(x-a)(y-b)fxy(a,b) + fyy(a,b)(y-b) (4)

Example 4

Expand the function f(x,y) = exy cos(x+y) about (0, )

using Taylor expansion.

Solution:

We have to get fx, fy , fxx , fxy , fyy  such that:

fx = yexycos(x+y) -exysin(x+y),fy=xexycos(x+y) -exy sin(x+y),

fxx = y exy (y cos(x+y)-sin(x+y))+exy(-ysin(x+y) - cos(x+y)),

fyy = x exy(xcos(x+y)-sin(x+y)) + exy(-xsin(x+y) - cos(x+y)),

fxy = x exy(y cos(x+y) - sin(x+y))+ exy(-ysin(x+y)).
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Therefore: at (0, )

f (0, ) = -1, fx(0, ) = -, fy(0, ) = 0,  fxx = - 2 +1, fyy =

1, fxy = 0.

Substitute in (4), thus f(x,y) = f(0,) + 1
1!

[fx(0,) (x-0) +

fy(0,)(y-)] + 1
2!

[ fxx(0,) (x-0)2 + 2(x-a)(y-) fxy(0,)+

fyy(0,) (y-)2), therefore

f (x,y) = -1+ 1
1!

 ( -x ) + 1
2!

 ( (- 2 +1) x2 + (y-)2)

Example 5

Expand the function f (x,y) = xy exy  about (1, 0) using

Taylor expansion.

Solution:

We have to get fx, fy , fxx , fxy , fyy  such that:

 fx = yexy(xy + 1), fy = xexy(xy + 1),   fxx = y2exy (xy + 2),

fyy = x2exy (xy + 2), and fxy = exy (xy + 1)2 + xy exy.
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Therefore: at (1, 0)

f (1, 0) =  0, fx = 0, fy = 1, fxx = 0, fyy = 2, fxy = 1

Substitute in (4), we will get :

f(x,y) = f(1,0) + 1
1!

 (fx(1,0) (x-1) + fy(1,0) (y-0)) +

1
2!

 ( fxx(1,0) (x-1)2 + 2(x-1) (y-0) fxy(1, 0) + fyy(1, 0) (y-0)2),

thus f(x,y) = y + (x-1) y + y2.

Problems

Expand in Taylor the following functions

1) f(x,y) = eiy sinx  about (
2
 ,0)

2) f(x,y) = sin(eixy)  about (
2
 ,0)

3) f(x,y) = x2 sinxy about (1,0)

4) f(x,y) = ex cosy  about (1,
4
 )

##########################################################
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Taylor Maclaurin expansion

If the above point is (0,0), i.e. a = b = 0, then the above

expansion is called Taylor Maclaurin so that: f(x,y) = f(0,0)

+ 1
1!

 (x fx(0,0) + y fy(0,0)) + 1
2!

 (x2 fxx(0,0) + 2xy fxy(0,0) +

y2 fyy(0,0)).

Example 6

Expand the function f(x,y) = ln(x+y+1) using Taylor

Maclaurin expansion.

Solution:

We have to get fx, fy , fxx , fxy , fyy  such that fx = 1
x + y+1

,

fy = 1
x + y+1

, fxx =
2

1
(x + y+1)

 , fyy =
2

1
(x + y+1)

 ,

fxy =
2

1
(x + y+1)

 .

Therefore: at (0, 0)

f (0, 0) =  0, fx = 1, fy = 1, fxx = -1, fyy = -1, fxy = -1
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Substitute in (4), we will get :

f(x,y)= f(0,0) + 1
1!

 ( fx(0,0) (x-0) + fy(0,0) (y-0)) +

1
2!

(fxx(0,0)(x-0)2 + 2(x-0) (y-0) fxy(0, 0) + fyy(0, 0) (y-0)2) ,

therefore f(x,y) = x + y - 1
2!

 [ x2 + 2x y + y2 ]

Envelope

In geometry, an envelope of a family of curves in the plane

is a curve that is tangent to each member of the family at

some point. Classically, a point on the envelope can be

thought of as the intersection of two "adjacent" curves,

meaning the limit of intersections of nearby curves. This

idea can be generalized to an envelop of surfaces in space,

and so on to higher dimensions.

Let  f (x,y,) = 0 is a given curve with parameter , then

to evaluate envelope which is the equation of the curve

including f (x,y, ) = 0, we have to follow these steps

 Obtain f  (x,y, ) = 0  , from which we can get

http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Index_set
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Tangent
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 = g(x,y)

 Substitute  = g(x,y)  in  f (x,y, ) = 0 such that the

envelope is   f (x,y, g(x,y)) = 0.

Example 7

Find the envelope of the following curves:

1- xcos + ysin= P,  is the parameter .

2- (x- c)2 + y2 = 2c

Solution:

1- (xcos  +ysin  = P)   , therefore -xsin+ycos= 0,

thus tan=y/x, so cos=
2 2

x
x y

, sin=
2 2

y
x y

, hence

envelope is 2 2x y  = P2.

2- 2 2((x- c)  + y  = 2c)
c

 , therefore 2(x-c) = 2, thus x-1 = c,

hence envelope is  1 + y2 = 2(x-1)  2x-3 = y2.
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Problems

Find envelope of the following functions

1) (x-cos)2 + (y-sin)2 = 

2) (x-)2 + y2 = 4

3) y=x + 1/

4) 2c x + (y- c)2 = 2y

##########################################################

Maxima and Minima

The problem of determining the maximum or minimum of

function is encountered in geometry, mechanics, physics,

and other fields, and was one of the motivating factors in

the development of the calculus in the seventeenth century.

Let us recall the procedure for the case of a function of one

variable y=f(x). First, we determine points xc where

f`( xc)=0. These points are called critical points. At critical

points the tangent line is horizontal. The second derivative

test is employed to determine if a critical point is a relative
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maximum or a relative minimum. If f``(xc) > 0, then xc is a

relative minimum. If f``(xc) < 0, then xc is a maximum. If

f``(xc)=0, then the test gives no information. The notions of

critical points and the second derivative test carry over to

functions of two variables. Let z = f(x,y) and the  critical

points are points in the xy-plane where the tangent plane is

horizontal. The tangent plane is horizontal if its normal

vector points in the z direction. Hence, critical points are

solutions of the equations because horizontal planes have

normal vector parallel to z-axis. The two equations fx = 0,

fy = 0 must be solved simultaneously to obtain the critical

points (xc , yc) and by applying the second derivative test so

that we get   fxx , fyy , fxy . If  (xc ,yc) = fxx(xc ,yc) fyy(xc ,yc)

- [fxy(xc ,yc)]
2 > 0, then at  (xc , yc) the function z = f(x,y) is

said to have maximum or minimum value, if fxx  fyy > 0,

then z = f(x,y) is said to have minimum value while if

fxx  fyy < 0, then z = f(x,y) is said to have maximum value

but if  (xc ,yc) = fxx(xc ,yc)  fyy(xc ,yc) - [fxy(xc ,yc)]
2 < 0,

then (xc , yc) is a saddle point and if  (xc ,yc) = 0, then we

have no decision.
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Example 8

Determine the critical points and locate any relative

minima, maxima and saddle points of function f defined by:

f(x,y)=2x2 + 2xy + 2y2 - 6x

Solution:

Find the first partial derivatives fx and fy such that:

fx(x,y) = 4x + 2y - 6 , fy(x,y) = 2x + 4y

The critical points satisfy the equations fx(x,y) = 0 and

fy(x,y) = 0 simultaneously, hence 4x+2y -6 = 0, 2x+4y = 0.

The above system of equations has one solution at the point

(2,-1). We now need to find the second order partial

derivatives fxx(x,y), fyy(x,y) & fxy(x,y) such that fxx(x,y)= 4 ,

fyy(x,y) = 4,  fxy(x,y) = 2. We now need to find   defined

above so that  = fxx(2,-1)fyy(2,-1)-fxy
2(2,-1)=(4)(4) -22 = 12

Since   is positive and fxx(2,-1) is also positive, according

to the above theorem function f has a local minimum at

(2,-1). The 3-Dimensional graph of function f given above
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shows that f has a local minimum at the point

(2,-1,f(2,-1)) = (2,-1,-6).

Example 9

Determine the critical points and locate any relative

minima, maxima and saddle points of function f defined by

f(x , y) = 2x2 - 4xy + y4 + 2

Solution:

Find the first partial derivatives fx and fy such that:

fx(x,y) = 4x - 4y , fy(x,y) = - 4x + 4y3

Determine the critical points by solving the equations

fx(x,y) = 0 and fy(x,y) = 0 simultaneously, such that:

4x - 4y = 0  and - 4x + 4y3 = 0.

The first equation gives x = y. Substitute x by y in the

equation - 4x + 4y3 = 0 to obtain - 4y + 4y3 = 0, therefore

4y (-1 + y2) = 0, hence y = 0, y = 1 and y = -1. We now use

the equation x = y to find the critical points such that (0, 0),

(1 , 1) and  (-1 , -1) are the critical points .



48

Determine the second order partial derivatives such that:

fxx(x,y) = 4,  fyy(x,y) = 12y2 ,  fxy(x,y) = -4

We now use a table to study the signs of   and fxx(a,b) and

use the above theorem to decide on whether a given critical

point is a saddle point, relative maximum or minimum.

Critical
point

(0,0) (1,1) (-1,1)

fxx 4 4 4
fyy 0 12 12
fxy -4 -4 -4

-16 32 32
Saddle Relative

minimum
Relative

minimum

Example 10

Determine the critical points and locate any relative

minima, maxima and saddle points of function f defined by

f(x , y) = - x4 - y4 + 4xy.
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Solution:

First partial derivatives fx and fy are given by

fx(x,y) = - 4x3 + 4y , fy(x,y) = - 4y3 + 4x

We now solve the equations fy(x,y) = 0 and fx(x,y) = 0 to

find the critical points such that -4x3 + 4y = 0, -4y3 +4x = 0.

The first equation gives y = x3. Combined with the second

equation, we obtain - 4(x3)3 + 4x = 0 which may be written

as x(x4 - 1)(x4 + 1) = 0, so that  x = 0 , -1 and 1. We now

use the equation y = x3 to find the critical points (0,0),

(1,1) and (-1,-1). We now determine the second order

partial derivatives such that fxx(x,y) = -12x2, fyy(x,y) = -12y2

, fxy(x,y) = 4. The table below shows the signs of   and

fxx(a,b). Then the above theorem is used to decide on what

type of critical points it is.

Critical point (0,0) (1,1) (-1,1)
fxx 0 -12 -12
fyy 0 -12 -12
fxy 4 4 4

-16 128 128
Saddle Relative

max.
Relative

max.
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Lagrange multiplier (conditional extrema)

Let f(x,y), g(x,y) are functions in two variables with

continuous partial derivatives such that g(x,y) = c is the

constraint equation and f(x,y) has an extreme value at

(xc , yc) which satisfy g(x , y) = 0.

If c c c cg(x , y ) g(x,y)i+ g(x,y), j 0 at x = x , y = y
x y
     ,

then there exist a number  such that:

c cf (x , y ) =  c cg(x , y ) ,

 is called Lagrange multiplier, therefore

f (x,y)i+ f (x,y)j
x y
 
  = [ g(x,y)i+ g(x,y)j

x y
 
  ]

Thus

f (x,y)
x

 = g(x,y)

x

 , f (x,y)

y

 = g(x,y)

y

 & g(x,y) = c

By solving the 3 equations, we get extreme points. This

method is called Lagrange multipliers.
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Example 11

Find the dimensions of the box with largest volume if the

total surface area is 64 cm2.

Solution:

Before we start the process here note that we also saw a

way to solve this kind of problem in Calculus I, except in

those problems we required a condition that related one of

the sides of the box to the other sides so that we could get

down to a volume and surface area function that only

involved two variables.  We no longer need this condition

for these problems.

Now, let’s get on to solving the problem.  We first need to

identify the function that we’re going to optimize as well as

the constraint.  Let’s set the length of the box to be x, the

width of the box to be y and the height of the box to be z.

Let’s also note that because we’re dealing with the

dimensions of a box it is safe to assume that x, y, and z are

all positive quantities. We want to find the largest volume

http://tutorial.math.lamar.edu/Classes/CalcI/Optimization.aspx
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and so the function that we want to optimize is given by:

f(x,y,z) = xyz,  2(xy+xz+yz) = 64   xy + xz + yz = 32

Note that we divided the constraint by 2 to simplify the

equation a little.  Also, we get the function g(x,y,z) from

this g(x,y,z) = xy+xz+yz, thus we will obtain four equations

such that solve.

fx= gx yz =  (y+z) …….. *

fy= gy xz  =  (x+z)………**

fz= gz xy  = (x+y)……… ***

xy + xz + yz = 32……………..****

Solve the first three equations, we will get x = y = z,

substitute in (****), thus x2 = 32/3, therefore x = y = z

= 32/3 .
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Example 12

Find the maximum and minimum of f(x,y) = 5x-3y subject

to the constraint x2 + y2 = 136.

Solution:

This one is going to be a little easier than the previous one

since it only has two variables.  Also, note that it’s clear

from the constraint that region of possible solutions lies on

a disk of radius 136 which is a closed and bounded region

and hence by the Extreme Value Theorem  we know that a

minimum and maximum value must exist. Here is the

system that we need to solve:

fx=  gx5 =  (2x)……..(#)

fy=  gy -3 =  (2y)…….(##)

x2 + y2 = 136………………(###)

Notice that, as with the last example, we can’t have = 0

since that would not satisfy the first two equations.  So,

since   0, we can solve the first two equations for x and y

http://tutorial.math.lamar.edu/Classes/CalcIII/AbsoluteExtrema.aspx
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respectively by substituting   x = 5
2 , y = 3

2

 in (###), we

will get 2
25
4

 + 2
9

4
= 2

17
2

= 136, thus 1
4

   , at = 1/4,

therefore x = 10, y = -6 and at = -1/4, thus x = -10, y = 6,

therefore f(-10,6) = -68 (min.), f(10,-6) = 68 (max.).

Example 13

Find the maximum and minimum of f(x,y) = xyz subject to

the constraint x + y + z = 1, assume x, y, z > 0.

Solution:

First note that our constraint is a sum of three positive or

zero number and it must be 1.  Therefore it is clear that our

solution will fall in the range 0< x, y, z < 1  Therefore the

solution must lie in a closed and bounded region and so by

the Extreme Value Theorem  we know that a minimum and

maximum value must exist. Here is the system that we need

to solve:

fx=  gx     yz = …………(i)

http://tutorial.math.lamar.edu/Classes/CalcIII/AbsoluteExtrema.aspx
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fy=  gy      xz = ………....(ii)

fz=  gz       xy = …………(iii)

x + y + z = 1…………………...(iv)

From the above equations, yz = xz   z(x-y) = 0 and

xz = xy   x(y-z)=0, thus z = 0 or x = y, if z = 0, therefore

 = 0, thus   xy = 0, hence either x = 0 or y = 0.

At z = 0, x = 0, therefore y = 1, or at z = 0, y = 0, thus x =1

and so we’ve got two possible solutions (0, 1, 0) & (1, 0, 0).

If x = y , therefore x = y = z = 1/3 and if x = y = 0 ,

therefore z = 1, so  we’ve got two possible solutions

(0,0,1) and (1/3,1/3,1/3), hence f(0,0,1) = f(0,1,0) =

f(1,0,0) =0 (min.) and f(1/3,1/3,1/3) = 1/27  (max.)
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Problems

1) Find all relative extrema and saddle points for

f(x, y) = 3x2 + y2 +9x-4y+6

2) Find all relative extrema and saddle points for

f(x, y) = x3 - y2 - yx2

3) A retail outlet sells two different telephone answering

machines. The demand functions are QA = 100 – 2x+y and

QS = 90 + x – 1.5y , where QA is the quantity demanded of

brand A and QS is the quantity demanded of brand S when

the prices charged are x dollars for brand A and y dollars

for brand S. Determine the prices that would maximize total

revenue from sales of both brands of answering machines.

How many of each would be sold at those prices?

4) Maximize f(x,y)= x+y subject to the constraint x2+y2 = 1.

5) Find the maximum and minimum of f(x,y) = 4x2 + 10y2

on the disk    x2 + y2 ≤ 4.

6) Find the maximum and minimum of f(x,y)=x2 + y2



57

subject to the constraint x2+xy+ y2= 31.

7) Find the maximum and minimum of f(x,y)= yx2+2y+ y3

subject to the constraint xy-1 =0.

8) Find maximum product of positive 3 numbers whose

sum equal S.

9) An open box with volume 12 m3, find the dimensions of

the box to obtain maximum area.

10) Expand f(x,y) = xy sin(xy) in Taylor Maclaurin series.

11) Find envelope of the function (x- )2+(y- )2 = P,  is

the parameter.

###########################################


